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ON NONLINEAR ACOUSTICS APPROXIMATION IN 

PROBLEMS BF GAS OSCILLATIONS IN PIPES,* 
A. N. KRAIKO and A. L. NI 

One-dimensional nonlinear oscillations of perfect gas in pipes are considered. The 

dependence of the slope of characteristics on parameter perturbations and the possib- 

ility of weak shocks are taken into account, but the variation of entropy and 
Riemann invariants in them are neglected. Particular attention is given to cases in 

which it is possible to disregard the interaction between waves of various sets.Near- 

resonance oscillations for which nonlinear effects and formation of shocks are part- 

icularly important are analyzed as an example. 

Among the publications that are relevant to further investigations of nonlinear acoustics 

of perfect gas and other media we would point out /l-19/. The most important of these for 

the derivation of concrete results is /l/, where a comparatively simple, but formal method is 

given for constructing a class of discontinuous solutions, and its effectiveness is illustrated. 

The method used here is closer to the physical approach developed in /2-9/ and, unlike /l/ is 

based on fairly clear considerations related to characteristics, their intersection, etc. 

The statement and solution of problems of nonlinear periodic oscillations are not possible 

(or unsubstantiated) without the clarification of a number of fundamental aspects. Thus, phy- 

sically obvious and experimentally observable periodic modes with shocks cannot in the main be 

defined by the exact equations of perfect gas. For instance, the entropy increase allowed for 

in the "exact formulation" moves the system, in the absence of a mean flow through the pipe, 

unavoidably away from the resonance mode, as was observed in /20/. Hence the analysis of near- 

resonance modes is only possible using the approximate model that takes into account heat re- 

moval through the walls, or simplified equations in which entropy increase in the shock is 

neglected. The use of simplified equations is also justified because in such problems oscil- 

lations, owing to the formation of shocks, are small away from and close to resonance (although 

they are greater in the second case). This circumstance, although impeding the use of numer- 

ical methods that are effective in other gasdynamic problems, guarantees the accuracy of approx- 

imate equations. 

On the basis of the above considerations the authors have developed a method which uses 

simplified equations and a special numerical procedure, and has several advantages (particular- 

ly as regards simplicity and the range of solvable problems) over those proposed in the cited 

publications. The inclusion in the numerical procedure of a natural algorithm for the deter- 

mination of shocks generated along the pipe length eliminatestheproblem of merging smooth 

sections of solutions which is possibly the weakestlink in almost all investigations carried 

out so far. 

1, Let us consider one-dimensional oscillations in a pipe at low velocities and nearly 

homogeneous remaining parameters which will be denoted by subscript zero. We define velocity 

u and the speed of sound e by u :-m Q&U and a = a,,(1 + sa'), respectively, where E is the 

deviation of u and a from.u, = 0 and a0 and is selected so that mar (J u' J, )a' J) = 1. Parameter 

E does not necessarily coincide with the amplitude of external actions that may be specified 

at the left-hand (I = 0) or right-hand (5 =X) ends of the pipe. Shocks may arise in the pipe, 

whose amplitude does not exceed 2s and the entropy increase in each shock is equal O(.G'). 

As stated in the introduction, we disregard this increase, and assume that the gas entropydoes 

not deviate from its mean value. On these assumptions the flow at every point is completely 

defined by Z& and a or by their functions, the Riemann invariants J*. For the perfect gas J*: 

u f 2ai(x - l),where x is the adiabatic exponent. 

The continuity regions J+(J-) remain constant along the c+(c-)-characteristics, while at 
intersections of shocks of "opposite" sets by characteristics they and the entropy do not 

change by more than O(ea), If a characteristic intersects in the pipe N shocks, the over-all 

change of J* does not exceed O(.ssN), and for .GN< s it is negligibly small in comparison with 

the deviation of invariants from their "mean" values. For N< E-' even in the presence of 

weak shocks we have, with an accuracy to E; J+ = J+IE(t, z)J and J- = J- Jn (t, x)1, where 5 and n 

are characteristic variables that remain constant along the c+- and c--characteristics. The 

nonlinearity effects have then a cumulative effect, giving rise (owing to the dependence of 
velocity of characteristics on parameters) to intersections with each other and with shocks of 

the same family. 
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Besides u' and a' we introduce x',t' and /*'by the equalities 

5 = X’L, t := t’L / 00, J* = a,cJ*’ 5 2a. i (x - 1) (1.1) 

whereL is a characteristic dimension and t is the time. Denoting by 2' the characteristic 
time, for instance, the period of the periodic flow, we have by virtue of (1.1) T = T'L/ ~0, 
X = X'L and J*' = u' f 2s' I (x - if, and in accordance with the choice of E$ IJTt'f _ 0 (1). 
Below we shall use only "primed" quantities with the primes omitted. Boundary conditions for 
invariants J+ (t, 0) = F+ (t) and J- (t, X) -= F- (t) can be formulated with continuous or discontinu- 
ous W(ft) m 0 (1) which we assume such that at any instants tl and t, 

with constants A*- O(1). 
In the used here notation the equations of characteristics are of the form 

i1.2) 

(1.3) 

Taking into account that g(q) is constant along every c+(c-)-characteristic, taking for E(If) 

the instants at which the c+(c-)-characteristic leaves the cross section 5 = 0 (X), and integ- 
rating the obtained equations, we obtain 

c+: t -xx= E - & L “+ 3’ {E) (t - E) 9 j’ J- (q) a] 
“s 

(1.4) 

c-: t+x=y ;-x+-e 1 _x+J-(q)(t-q) 3+f3+(j)dt] 
11 

The integral in the first equation is calculated with E : const and in the second, with 

q =I cor1st. Shock waves are generated as the consequence of intersection of characteristics 

of the same set. Since the velocity of a weak shock is, to within E , equal to the half-sum 
of velocities of characteristics converging on it /17/, hence, for instance,for a shock prop- 
agating to the right 

dz, 
-= 1 -l- e [E-i_! f'(L) + "4 J+ (&) i s+!-($,*,] d# (1.5) 

where it is taken into account that S- at an intersection of a weak shock of the "first set" 
(the "c+-shockV)does not change, and the subscript s denotes parameters at the shock while 
subscripts 1 and 2 denote parameters on the opposite sides of it. By virtue of 11.4) t-_E =Z 
5 --t 0 (8X) and t--q~~X-si O(PX). Hence it is possible to substitute for (1.4)the form- 
ulas 

C+: ?--P=E--E J; (I]) dt 
I 

+ 0 (&Y) 
(1.6) 

Equations (1.5) and (1.6) with the initial distributions of J* and boundary conditions, 
fox instance, for J+ at the left and for J- at the right-hand pipe ends, completely determine 
the flow. Unlike in the linear (acoustic) approximation, the initial distributions are "for- 
gotten" at t>>x, and the periodic boundary conditions "produce" solutions periodic in t. 
The analysis is considerably simplified when the interaction between waves propagating in dif- 
ferent directions is negligible, which makes it possible to neglect in the right-hand sides 
of (1.5) and (1.6) terms containing factors (3 - x). The c+- and c--characteristics are then 
represented by the straight lines 

c+: t-x g - e (x + I)/+ (Qz i 4 (1.7) 

c-: t -1. .I 11 + x -t- t: (H + l)J_ (I/)(X - 5) / 4 

and the shock equations, after rejection of terms of order ~2T,become 

(1.8) 
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The flows defined by each pair of Eqs. (1.7) and (1.8) represent , as in /17-19/, sequenc- 
ies of simple waves separated by weak shocks. 

In the problems considered here the disregard of interaction between waves of different 
sets was used and partly substantiated in /S-88/. It should be, however, stressed that this 
approximation is far from being always justified in problems of this type. The disregard of 
terms of order ET in (1.7) and (1.8) is admissible, besides in the obvious case of x=3, 
first, for long pipes for which nr XIT>l and, second, when n - 1 for a part of near- 
resonance modes. Note that when the latter is admissible, it is possible to substitute for 
the integration of (1.8) the following method of replacing the many-valued solution by asingle- 
valued discontinuous solution. Let us consider, for instance the c+-wave for which the fun- 
ction t =: t(J+) at cross section I = const determined by (1.7) proves to be many-valued. Then 
the shock which eliminates the many-valuedness intersects that cross section at instant-t = t,(s) 
which is determined by the condition J;~(%) 

s [t(J+)- t,] dJ+= 0 
J$x) 

In this case the rule is derived in practice as in /17/. With the use of (1.7) and (1.8) 
it can be written in the form E, 2' 

I J+ (8 dE = 
I,1 

+ (J: + Jd:) (&z - ~1) (1.9) 

Formla f, = t &) = t (Es,) = It (E,,) + t &,)I / 2 with function t(E) determined by (1.7) was 
used for t, when deriving (1.9). It can be shown that (1.9) is also valid when the shock wave 
is already present at I = 0,i.e. that the distribution of J+(c) is discontinous. 

To complete the exposition of general considerations we formulate an integral law which 
may, for example, be used for the control of calculations. This law of "conservation of the 
invariant" is analogous to the law of conservation of momentum in a simple wave, and can be 
written in the form :2 

j:J%f, __ &++ J,*)(t, - t,) = 1 J+d: - $((Jl+ ~. J,')(& - 5,) (1.10) 
11 i, 

For c--waves equalities equivalent to (1.9) and (1.10) are obtained from the latter by 
substituting in them q for & and superscript minus for plus. 

2, Let us substantiate the statements made above about the applicability of(1.7)-(1.10). 
We begin with long pipes, and evaluate the terms rejected in (1.6) in the case of a C--wave, 
restricting the analysis to the interval 1,~ t~<t 2 in which the wave is intersected by a single 

c+-shock. As implied by (1.71, along the c- -characteristic 1, = coIlstand 

2dt = & - E(X $- 1)(J-d.z {- J+dx -I- zdP)/ 4 

Hence, with allowance for (l-7), we have 

I* 
%+I 

eT IS [ZJ’J- + (J+)z] dx + (J,+)%, - (Jl+)%, - 

XI 
Es2 

s 
z, [(J;)a - (J,:)2] = “J & - 

s 
+ 

Es1 El 

[ZJ+J- + (J+)*] dz + (J,+)%, - (J,+)% - 

XI 

Then, omitting on the strength of (1.9) the last two terms and carrying out summation over all 
seoments of the C--characteristic, from t= t7 to the current t we obtain 

J+d&-ew {j [zJ+J- + (J+)‘] de $ 

‘I Em) 
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(J.+ [5 (t)l)‘X - (J+ [c (?j)])lX = 0 (Tj 1. 0 (FX) 

which shows that the respective terms O(ET-~ ?X) in (1.6) are small in comparison with ? I 

even when 12>1. We stress thatthe mutual cancellation of the last two terms in the previous 

equality on the strength of (1.9) is of fundamental importance for long pipes. Indeed it can 

be shown that each of these terms is O(eX) and, consequently, summation over all segments of 

the ,:--characteristic would yield O(E.Y?~ T) and could not be neglected. A similar analysis 

for the c--characteristics and shock waves yields the same result. 

The nonlirrear effects are particularly important in near-resonance modes in the case of 

short pipes (n -1). It can be shown that in the problems considered below it is necessary to 

know exactly the relative, not the absolute shifts of intersecting characteristic and shocks 

of the same set and, also, the instants at which the c--characteristics and shock waves reach 

the cross section z- 0. For this (1.7)- (1.10) are suitable for taking the nonlinearity into 

account with an accuracy to within e, although such accuracy is not always sufficient. 

Let us first see how waves of the opposite set affect the inter-section of characteristics 

and shock of the same set and, consequently, their evolution. Along the pipe length character- 

istics and shocks of the same intersect each other. They belong to "short waves" whose width 

with respect to .z or t is of order F\ . LT. T. Perturbations of the opposite set shift each 

short wave as a whole with an accuracy to higher order terms, without affecting the interaction 

between its "elements". From this point of view, the approximation of noninteracting waves of 

different sets defines very accurately the flow. As regards the accuracy of calculation of 

the instant at which the L--characteristic reach cross section r 11, it also proves to be 

higher than for intermediate cross sections. 

Thus, as shown below, the remainder t - i, where 5 is the instant of emergence from the 

left-hand end of the pipe that of the c--characteristics which, after having become the c-- 

characteristic on reflection at L = X, returns to the left-hand end at instant t, is import- 

ant for the analysis in the neighborhood of the "half-wave" resonance when 2,1 k 1 -,- z, k 0, 
I.... and 1 A 1 <: f . Close to the "quarter-wave" resonance, when & I 'k 1 + A, the same part 

is played by the remainder 1 ~- ; : (t ~- E)+(t - ;) in which the instants r,5 and t,; are related 

to each other as in the previous case. If y and s, are the contributions of interaction with 

waves of the opposite set to the remainders t - 5 and t -- i, it is possible to show that y and 

yI= 0(~n+A) hold for the half- and quarter-wave resonances. By virtue of (1.4) the estimates 

confirm the validity of above statements. 

3, At the right-hand end (I : X) of the pipe we stipulate the condition !~(t, X) = 0 or 

J- (1, X) : --J+ (t, X) (3.1) 
By virtue of (1.6) and (3.1) we have 

J- It (E), 01 : -J+ (5, 0) + 0 (f?n) (3.2) 

f (i) = E + 2x - FX (x -t I)/+ (Z, 0) i 2 + 0 (2X -t qT) 

where it is taken into account that the number of shocks is N - n. At the left-hand end we 

stipulate the boundary condition 

er. ]J' (f. 0) ;m ]jJ- (t, 0)l ~~ f (T) ZEE 6 F (T), 7 t I) I (3.3) 

where rx and p are known constants, / and F are periodic functions of t of period unity, and 

fi : map if I. If velocity oscillates for 5 = U then (L = ii, and B -1. For pressure oscil- 

lations conforming to the law p -(la ]I +-f(r)] we have r. =x / :! and p = -1. When in the 

problem of velocity oscillations at the right-hand pipe end is fixed instead of velocity, then 

J-(1,X) J+(t, X) holds instead of (3.1) and n. l.1: but p =~ -1. Such problem was consider- 

ed, for instance, in /6--0,lQ/. Its solution is virtually the same as that of the pressure 
oscillation problem. 

Setting I (T) : J+ (1, 0) and E E/ I' we find that on the strength of (3.2) and (3.3) 

FV. IJ (T) - pJ (5”)l ~- 6F (T) -t 0 (&“rL) (3.4) 

7 5 2/L - (Prl i 2)(” -{- 3)J (E ) $ 0 (P% + “1’) 
The same or nearly the same system was previously obtained in /6,7/. However the deriva- 

tion of discontinuous solutions requires the additional condition of "multivalence elimination" 
which is to be based on respective equations or laws, such as, for example, (1.9). Unlike in 
the cited above publications, these rules are incorporated in the procedure itself of the sclu- 
tion derivation in every period of T proposed here. This not only eliminates the possibility 
of indefiniteness but, also, makes possible a natural derivation of solutions with any arbitr- 
ary number of shocks on a single period. The determination of .7 (7) comprised the establish- 
ment of periodicity in T, and was carried out as follows. First, J + 0 was specified for 

T ; 0. Then, using (3.4) .I was determined for 0~ r&z,_1 with simultaneous elimination of 
ambiguity in conformity with rule (1.9). Owing to the periodicity of the sought solution,the 
obtained J(T) was periodically continued to the negative r required for the determination of 
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J in the interval 1 (z< 2. After the determination of J the process was repeated in every 

new period. Note that when F(T) and fj are fixed then, by virtue of equations that determine 

the solution , F~J/S is a function of 7 and "similarity parameters" 0 =~ 6n(x f 1) 1 CI and II, 

more strictly r,f2 and Y ss 21L I_ [ZnJ, where [cc] is the integral part Of <p.Before presenting 
the results of calculations, let us consider the case when system (3.4) can be simplified. If 
ES<< (j then, retaining in the first of Eqs. (3.4fonly the t erms that are linear with respect to 

e,we obtain the equations EU IJ (z) - f3 J (z - 2n)l = SF (r) (3.5) 
which defines the oscillations of gas in the usual-acoustic approximation.Let,moreover,F (7) = 
sin 2nT.Since any periodic function with zero mean value can be expanded in a Fourier series in 
sines, it is possible with the use of the latter to derive a solution in the general case. For 
function F (T) the ;>eriodic sojution of (3.5) is 

sln(kt fcP) 
7= ~i-t_t)~-28cos4nn ’ QcP= pf$$:, (3.6) 

In the presence of resonance I +pa-.zgcos4nn=o and (3.6) loses its meaning. Since 
Icos4nn(<l and 1 +fi2,2/8( in which the equality is only satisfied for IBI=i* a resonance 
can only occur when p = &I. In that case the.conditions of resonance reduce to the equalit- 
ies 13;coa4~= 0, which yields 2n=k+l and 4n=Zk+l (k =L 0, 1, . . .), respectively. At near- 
resonance (when IA/Sh6) by virtue of (3.6) e 2 O(i), i.e. the assumption that @n<h used 
in the derivation of (3.5) is violated. In connection with the investigation of resonance it 
is useful to write down the zero solution of (3.51 for FI,T)= 8(~)sin2nr with T<O, and the 
Heaviside function 9(r) equal zero for t<O and unity for T > 0. It can be shown that for 
t>O it is of the form 

where summation is carried out over all m=O,i,..., except n= kfi. 
Another simplified form of (3.4) valid when enef is obtained as follows. ExpandingJ(r) 

in the neighborhood of p = r-&z we obtain in conformity with the second of equalities (3.4) 
the equation 

ea IJ (t) - f3J (t - 2n) - (&fin 12)(x + l)J (T - 2 n)J. (r - .%&)I= (3.7) 
61; (z) + 0 (E% $ Gy) 

derived on the assumption that J’~dJidz~O(If. This estimate is not valid, for instance, 
for a beam of rarefaction waves where J.-e-' and, also, for uneven functions F @). Note 
that passing to (3.7) and (3.8) in small neighborhoods (of order E or A i of shocks introduces 
additional errors. 

At near-resonance modes in the problem on velocity oscillations 2n = k+ 1+ A, and y 
is close to the zero integral of J over the (k+ j)-st period and, as previously indicated, is 
0 (EIZ i_ A). Hence, having expanded Jfz _ 2n) in (3.7) in the neighborhood of point z - ,+.-.. 1 

and taking into account the periodicity of J, we obtain the equation 

E [J'(r)A - (en / 2)(x -j- l)J(z)J' @)I = 26F (r) + 0 (e3n2 + (3.8) 

GA -t_ sA2) 

which is valid, as is also Eq. (3.17) in /l/, only for sn< 1, or more exactly for enJ'*i. 
The essential difference in these is the substitution in /l/ of s-ltg(nA) for A which makes the 
equation in /l/ and (3.8) valid close to and away from resonance. Without this substitution 
(3.8) is only valid close to resonance where j A1<U((s}. and by virtue of (3.8) e - S'12 . Un- 
like (3,7) I (3.8), and Eq. (3.171 in/l/ , system (3.4) together with rule (1.93 is valid indep- 
endently of the quantity ERJ or of the degree or nearness to resonance. 

In the problem of pressure oscillations a =x 12 and 8 =-1, and the near-resonance 
modes obtain for 4n = 2k + Ii i n with IA l&S<l. To analyze these we write (3.4) for two 
instants of time % and p with the relation of p to r being the same as that of p to T.W~ 
have 

J (7) +- J (E") .= (26 / E.A)F (a) + 0 (e'n) (3.9) 
J (5") + J(5") = (2s i EX)F (E") + 0 (6%) 

E" = T - 211 i- (E12 / 2)(x -t l)J (r) + 0 (E”N +- 81)) 

5” = E” - 2n -+ (En / 2)(X + i)J (5”) + 0 (&% -t Ea) 

We add the third and fourth of equalities (3.91, eliminate from the right-hand side of the 
obtained equation the sum J(r) i_ J(r) using the sec6nd equality of that system, and take into 
account the structure of terms in (1.41, which provided in (3.4) and (3.91 terms of order SY. 
Then setting 4s _ 2h_ + 1 + A we obtain 

5" _ t - 2/i - 1 - A + (6~ /X)(X + l)F (P) + 0 (esn2 + e'n i- FYI) 
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where in conformity with the earlier statement y1 x O(sn -r A) when I_1 1<1. Restricting the 

analysis to 1 A I<1 we subtract the second of Eqs. (3.9)from the first and use for 5" the 
last expression. Then,proceeding as in the derivation of (3.7) and (3.8), we obtain the equa- 
tion 

F \zJ'(T)- ~l?fi (z + l)F (r)J'(r) Y. 26 [F (T) _ F (?)I -c (3.10) 
0 (P/l '_ [.1,!‘1 !~ ??,I _/. sRLtzZ) 

In this problem (see Sect.2), unlike in the previous one, Y - 0 (1). Hence in this case 

Eq. (3.10) is more exact then (3.4). This is readily understood, if one recalls that in the 

derivation of (3.10) supplementary information about terms related to wave interaction was 

used besides (3.4). 

We begin the investigation of near-resonance modes on long pipes (IL ->I) for which wecan 

expect that et16 : ~6 > mar (I A / F, &, c4n2, t.fi21~‘)) with X '_ 0 (1) I using (3.10). In this case 

t: == xi II is independent of 6 and (3.10) reduces to 

E12J’ (T) 2 I/,’ (T - ‘li?) - IT (T)I / (i! _t l)K (T - II J (3.11) 

In conformity with the equalities and inequalities obtained above and, also, with the 

meaning of F and 6 the necessary condition of realizing the considered approximation are: 

x ; II 36 .> max (x 1 A 1 IL-l, x:“L-‘) , but they are insufficient. Indeed, as implied by the deriva- 

tion of (3.10) and (3.11), the continuity sections of J(T) are defined by these equations only 

then, when they are the result of double reflection from the z X wall of characteristics 

generated by the continuous distribution of .J (<'). If If' is a function odd with respect to 

the half-period as, for example, -ill %CT , then /s' (T- 11,) =--F (T) and EXJ’ (T) -7 4 I: (x b 1). 
On the other hand according to (3.9) 

f T ~ 21, -: $UJ (EC)@ -1 1) ; 2 
and an analogous relation links 5' and E". It follows from this that the continuous solution 

(3.11) is completely "upset", and becomes a shock when passing the pipe in one direction.Hence 

in the case of long pipes function J(z) does not contain such sections, at least in the case 

of odd I: .Consequently,the section I = Ocan only be reached, besides shock waves, by the 

C-characteristics that are reflections from the z = X cross section of centered wavesorigin- 

ating at the reflection of compression shocks from the pipe left-hand end. This is diagram- 

matically shown in Fig.1, where the thin lines represent characteristics and the heavy ones, 

shocks. 
Of particular interest is the case in which the centered wave 

width in the direction of t is, after return to section x:-o, 

equal il‘. It can be shown that in the case of long pipes this 

t 
occurs at resonance. The initial intensity with respect to eJ 
of each beam is, then, equal 1 : (z Y 1)~ and the instants of shock 

reflection from section .r := 0 coincide for b' sin2n-c with the 

half-periods. Although in this case (3.10) and (3.11) are invalid, 

nevertheless t‘~ -O(l) which by virtue of (3.9) ensures the vali- 

dity of the derived solution, in any case for n-l - 6>ne2. Such 

solutions can also be constructed using (3.9) also for 72 \< 0 (1). 

Here F -O(l) and the rarefaction wave fan is the result of re- 

flection from cross section .c _ 0 of a beam of compression waves, 

not of a shock wave (in fact, compression waves containing the 

shock may focus not on a point but on a small segment of the t - 

0 T I 
Y axis). These solutiorsare, however, of no interest, since for 

them the terms under the symbol "ci" in (3.9) are not small. In 

Fig.1 the case of pressure oscillations at one of the short pipe ends 
the analysis of near-resonance modes cannot generally be carried 

out in the considered approximation as completely as in the in- 
vestigated above cases. 

The following possibilities exist here besides the one just now discarded. 
Let 11141 but still sufficiently large for &IAl- 6 > map (s3, E% 1 A 1). Then P -S/A, and 

the corresponding simplification of equality (3.10) coincides with the equation that can be 
obtained from Eq. (3.5) of acoustics when 1 A I< 1 . The latter is natural, if one takes into 
account that in this case the inequality 1.~1 -6, which ensures remoteness from resonance, 
follows from 6 3 ~lli>\ (I?, E: 1 A 1) . 

Let us, finally, consider a short pipe for jll<B, when in (3.lO)the terms of order O(G) 
can be the principal term besides the first one. From this, even without knowing its explicit 
expression, we find that E - fi", as opposed to E- cS"~ in the problem of velocity variation. 
Note that the necessity of including in the analysis of the problem of pressure oscillations 

or, which is the same, of problems of the pipe with fixed pressure at one of its ends, follows 

from the investigations described in /6,8-lo/, with the dependence t‘ -8' first established 
in /lo/ and then in /0/. 
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Because of the importance of term with third power of E for near-resonance modes with 

specified and oscillating pressure, we recall the factors that induce their appearance. This 

is, first of all, the transition from (1.4) to (1.6). If this is not carried out, the second 

of Eqs. (3.4) is transformed to the more exact equality 

T = E" + [2n + 0 (q)l ! 11 + e (x + 1) J (5”) I41 

The exactness of the obtained solution is, nevertheless, even now insufficient due to a 

number of reasons. The main of these are: the disregard of interaction between waves of dif- 

ferent sets and the change of invariants at the shocks (the inexpediency of taking into acc- 

ount the entropy increase was explained at the beginning of this paper), and the use of rule 

(1.9). As regards the linearization of the boundary condition for z=O in the problem of 

velocity variationitcanbe statedthattheerrors associatedwiththisalthoughofthe same order, 

are 

Fig.2 

Fig.3 

Fig.4 

not of fundamental importance, since the condition au(GO)=f(r) may be considered as an exact 
equality and unrelated to the linearization of the boundary condition in the problem of the 
piston. 

4, As already indicated, a numerical procedure was developed during the investigation, 
which made possible an effective solution of obtained equations, of course, without taking in- 

to account terms of order E%, etc. Its effectiveness was confirmed by numerous computations 
a small part of which was carried out for F(T)= sin2nr and X= 1.4 is shown in Figs.2-4. 

The results of calculations in the problem of velocity oscillations were compared with 
respective results obtained in /l/. As already indicated, the formulas used there are valid 
only for comparatively small K, 3 en max) J’(T)). In the considered examples the factor nu+xIJ' 

w I zz 2n and is consequently important. The results obtained with K,<i by various meth- 
ods were virtually the same. This and equality (1.10) which implies that the integral over 
the period of J(r) must remain invariant which was always checked, may be taken as the just- 

ification of K,-gi taken in /l/ as the rule for the introduction of discontinuity. As K, 
or K652nsn is increased, the difference in results becomes not only quantitative but, also, 
qualitative. This is demonstrated in Fig.2 where the solid lines relate to six "oscillograms": 

J" (7) 5 eJ (z) / (&J)*, where at resonance (EJ)* = max (PI). In this case the velocity oscillation 

amplitude at t= 0 was fairly high: 6(x ;- i) = 0.08 and n=3, hence K,-o(1). The resonance 
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oscillogram denoted by the symbol "OU in Fig.2 relates to 2,~ (;, i; 5 , and 1 Y =7 "n - I'n] l!, 

where the integer k is defined in the equality 211 ~-k 1 : A. The solid curves denoted inFig. 
2 by numerals I,...,5 relate to the following sets of values of 211, k, vJ and A: 6.15. 5, 0.15, 0.15; 

6.4, 5,0.4,11.1; 6.5, ;,(i;),(l.5,(1.5(~0.5); 6.6, 5(6),U.ti.U.6(--0.4); 6.85, 5(6), 0.85, 0.85(--0.15). In the last three sets 
the figures in parentheses indicate the "supplementary values of k and A which define the 
closeness of the mode to the adjacent resonance". In this problem, as implied by (3.4) and 
(1.9), we have 

.I (T, 0, -A) ---J (--7, $1, A) 
(4.1) 

The similarity parameter Sl= 6n(x-l-1)/~ differs not more that 15% even for the outer 
curves in Fig.2. The comparison of curves 1 and 5, or 2 and 4 indicates the validity of (4.1). 
The sinusoid ME/* shown by the dotted curve in Fig.2 defines velocity oscillations at 

5 >z (), while the dash line is the oscillogram calculated in conformity with /l/. The differ- 

ence between the solid and dash line curves shows the error of the theory in /l/(whenK, - o(i)), 

Note that for resonances in which more than one shock is formed in a period, the rule of shock 

introduction used in /l/ indicates a single discontinuity. 

For X,+21 on the strength of (3.4) and (3.8), as well as of formulas in /l/ close to a 

"half-wave" resonance E _ $2, or in "similarity variables" A; Ii; in;-1':'. In particular, the 
difference of EJ at the shock proves to be equal 4611/z?. I consequently, also K, 

and K,, are increased, deviation from this regularity is observed. This is illustrated in 

Fig.3 where the ratio of the shock intensity ) to cts/dx is shown as a function of !!. 
The oscillograms shown in Fig.4 were computed on the same basis as in Fig.2 and relate to 

the problem of pressure oscillation with 6(x I) / x =: 0.08 and k = H. In this case &, :! 1; 
I .\ corresponds to the "quarter-wave" resonance (\:- 0); it is shown by the curve denoted by 

11, while the curves denoted by numerals 1, --I, z , and --2 relate to the following "sets" of 

1~1. v and .2: ti.03, il.li5. 0.3: ti.35. 0.35. -~1.3. lj.75, O.i5, 0.5 ti.25, 0.2j t and (1.5. As in the previous case, 
equality (4.1) is satisfied, as can be seen from Fig.4. In Fig.2 the oscillogram discontinui- 

ties correspond to compression shocks propagating to the right from the pipe left-hand end, 

while those in Fig.4 relate to rarefaction wave beams. Both are the result of reflection of 

waves arriving here from the right. 
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